Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529532

RESUMO

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Assuntos
Disfunção Cognitiva , Endofenótipos , Animais , Camundongos , Humanos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Lactatos/metabolismo , Concentração de Íons de Hidrogênio
2.
Sci Transl Med ; 15(700): eabq7721, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37315111

RESUMO

Intracranial aneurysms (IAs) are a high-risk factor for life-threatening subarachnoid hemorrhage. Their etiology, however, remains mostly unknown at present. We conducted screening for sporadic somatic mutations in 65 IA tissues (54 saccular and 11 fusiform aneurysms) and paired blood samples by whole-exome and targeted deep sequencing. We identified sporadic mutations in multiple signaling genes and examined their impact on downstream signaling pathways and gene expression in vitro and an arterial dilatation model in mice in vivo. We identified 16 genes that were mutated in at least one IA case and found that these mutations were highly prevalent (92%: 60 of 65 IAs) among all IA cases examined. In particular, mutations in six genes (PDGFRB, AHNAK, OBSCN, RBM10, CACNA1E, and OR5P3), many of which are linked to NF-κB signaling, were found in both fusiform and saccular IAs at a high prevalence (43% of all IA cases examined). We found that mutant PDGFRBs constitutively activated ERK and NF-κB signaling, enhanced cell motility, and induced inflammation-related gene expression in vitro. Spatial transcriptomics also detected similar changes in vessels from patients with IA. Furthermore, virus-mediated overexpression of a mutant PDGFRB induced a fusiform-like dilatation of the basilar artery in mice, which was blocked by systemic administration of the tyrosine kinase inhibitor sunitinib. Collectively, this study reveals a high prevalence of somatic mutations in NF-κB signaling pathway-related genes in both fusiform and saccular IAs and opens a new avenue of research for developing pharmacological interventions.


Assuntos
Aneurisma Intracraniano , NF-kappa B , Animais , Camundongos , Aneurisma Intracraniano/genética , Mutação/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/genética , Humanos
3.
Glia ; 71(8): 2005-2023, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37102766

RESUMO

The phagocytosis of dead cells by microglia is essential in brain development and homeostasis. However, the mechanism underlying the efficient removal of cell corpses by ramified microglia remains poorly understood. Here, we investigated the phagocytosis of dead cells by ramified microglia in the hippocampal dentate gyrus, where adult neurogenesis and homeostatic cell clearance occur. Two-color imaging of microglia and apoptotic newborn neurons revealed two important characteristics. Firstly, frequent environmental surveillance and rapid engulfment reduced the time required for dead cell clearance. The motile microglial processes frequently contacted and enwrapped apoptotic neurons at the protrusion tips and completely digested them within 3-6 h of the initial contact. Secondly, while a single microglial process engaged in phagocytosis, the remaining processes continued environmental surveillance and initiated the removal of other dead cells. The simultaneous removal of multiple dead cells increases the clearance capacity of a single microglial cell. These two characteristics of ramified microglia contributed to their phagocytic speed and capacity, respectively. Consistently, the cell clearance rate was estimated to be 8-20 dead cells/microglia/day, supporting the efficiency of removing apoptotic newborn neurons. We concluded that ramified microglia specialize in utilizing individual motile processes to detect stochastic cell death events and execute parallel phagocytoses.


Assuntos
Microglia , Fagócitos , Adulto , Humanos , Recém-Nascido , Microglia/metabolismo , Hipocampo/metabolismo , Fagocitose/fisiologia , Neurônios/metabolismo , Encéfalo
4.
Anat Sci Int ; 98(3): 309-317, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36773194

RESUMO

The three-dimensional stria vascularis (SV) and cochlear blood vessel structure is essential for inner ear function. Here, modified Sca/eS, a sorbitol-based optical-clearing method, was reported to visualize SV and vascular structure in the intact mouse cochlea. Cochlear macrophages as well as perivascular-resident macrophage-like melanocytes were detected as GFP-positive cells of the CX3CR1+/GFP mice. This study's method was effective in elucidating inner ear function under both physiological and pathological conditions.


Assuntos
Cóclea , Orelha Interna , Camundongos , Animais , Cóclea/diagnóstico por imagem , Cóclea/irrigação sanguínea , Cóclea/patologia , Estria Vascular/patologia , Macrófagos , Microscopia Confocal
5.
Development ; 150(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36458527

RESUMO

Ramified, polarized protoplasmic astrocytes interact with synapses via perisynaptic astrocyte processes (PAPs) to form tripartite synapses. These astrocyte-synapse interactions mutually regulate their structures and functions. However, molecular mechanisms for tripartite synapse formation remain elusive. We developed an in vitro co-culture system for mouse astrocytes and neurons that induced astrocyte ramifications and PAP formation. Co-cultured neurons were required for astrocyte ramifications in a neuronal activity-dependent manner, and synaptically-released glutamate and activation of astrocytic mGluR5 metabotropic glutamate receptor were likely involved in astrocyte ramifications. Astrocytic Necl2 trans-interacted with axonal Necl3, inducing astrocyte-synapse interactions and astrocyte functional polarization by recruiting EAAT1/2 glutamate transporters and Kir4.1 K+ channel to the PAPs, without affecting astrocyte ramifications. This Necl2/3 trans-interaction increased functional synapse number. Thus, astrocytic Necl2, synaptically-released glutamate and axonal Necl3 cooperatively formed tripartite glutamatergic synapses in vitro. Studies on hippocampal mossy fiber synapses in Necl3 knockout and Necl2/3 double knockout mice confirmed these previously unreported mechanisms for astrocyte-synapse interactions and astrocyte functional polarization in vivo.


Assuntos
Ácido Glutâmico , Sinapses , Camundongos , Animais , Sinapses/fisiologia , Camundongos Knockout , Ácido Glutâmico/farmacologia , Astrócitos/fisiologia , Fibras Musgosas Hipocampais
6.
J Vis Exp ; (186)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36094267

RESUMO

Since brain functions are under the continuous influence of the signals derived from peripheral tissues, it is critical to elucidate how glial cells in the brain sense various biological conditions in the periphery and transmit the signals to neurons. Microglia, immune cells in the brain, are involved in synaptic development and plasticity. Therefore, the contribution of microglia to neural circuit construction in response to the internal state of the body should be tested critically by intravital imaging of the relationship between microglial dynamics and neuronal activity. Here, we describe a technique for the simultaneous imaging of microglial dynamics and neuronal activity in awake mice. Adeno-associated virus encoding R-CaMP, a gene-encoded calcium indicator of red fluorescence protein, was injected into layer 2/3 of the primary visual cortex in CX3CR1-EGFP transgenic mice expressing EGFP in microglia. After viral injection, a cranial window was installed onto the brain surface of the injected region. In vivo two-photon imaging in awake mice 4 weeks after the surgery demonstrated that neural activity and microglial dynamics could be recorded simultaneously at the sub-second temporal resolution. This technique can uncover the coordination between microglial dynamics and neuronal activity, with the former responding to peripheral immunological states and the latter encoding the internal brain states.


Assuntos
Microglia , Vigília , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia
7.
J Vis Exp ; (185)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35876553

RESUMO

Microglia, the only immune cells resident in the brain, actively participate in neural circuit maintenance by modifying synapses and neuronal excitability. Recent studies have revealed the differential gene expression and functional heterogeneity of microglia in different brain regions. The unique functions of the hippocampal neural network in learning and memory may be associated with the active roles of microglia in synapse remodeling. However, inflammatory responses induced by surgical procedures have been problematic in the two-photon microscopic analysis of hippocampal microglia. Here, a method is presented that enables the chronic observation of microglia in all layers of the hippocampal CA1 through an imaging window. This method allows the analysis of morphological changes in microglial processes for more than 1 month. Long-term and high-resolution imaging of the resting microglia requires minimally invasive surgical procedures, appropriate objective lens selection, and optimized imaging techniques. The transient inflammatory response of hippocampal microglia may prevent imaging immediately after surgery, but the microglia restore their quiescent morphology within a few weeks. Furthermore, imaging neurons simultaneously with microglia allows us to analyze the interactions of multiple cell types in the hippocampus. This technique may provide essential information about microglial function in the hippocampus.


Assuntos
Hipocampo , Microglia , Animais , Encéfalo , Camundongos , Neurônios/fisiologia , Sinapses/fisiologia
8.
Microscopy (Oxf) ; 71(Supplement_1): i81-i99, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35275183

RESUMO

Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Humanos , Camundongos , Sinapses
9.
Microscopy (Oxf) ; 71(12 Suppl 2): i2, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35275184
11.
Front Neuroanat ; 15: 757499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803616

RESUMO

The neural network in the brain can be viewed as an integrated system assembled from a large number of local neural circuits specialized for particular brain functions. Activities of neurons in local neural circuits are thought to be organized both spatially and temporally under the rules optimized for their roles in information processing. It is well perceived that different areas of the mammalian neocortex have specific cognitive functions and distinct computational properties. However, the organizational principles of the local neural circuits in different cortical regions have not yet been clarified. Therefore, new research principles and related neuro-technologies that enable efficient and precise recording of large-scale neuronal activities and synaptic connections are necessary. Innovative technologies for structural analysis, including tissue clearing and expansion microscopy, have enabled super resolution imaging of the neural circuits containing thousands of neurons at a single synapse resolution. The imaging resolution and volume achieved by new technologies are beyond the limits of conventional light or electron microscopic methods. Progress in genome editing and related technologies has made it possible to label and manipulate specific cell types and discriminate activities of multiple cell types. These technologies will provide a breakthrough for multiscale analysis of the structure and function of local neural circuits. This review summarizes the basic concepts and practical applications of the emerging technologies and new insight into local neural circuits obtained by these technologies.

12.
J Alzheimers Dis ; 83(4): 1563-1601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34487051

RESUMO

Neurological disorders significantly impact the world's economy due to their often chronic and life-threatening nature afflicting individuals which, in turn, creates a global disease burden. The Group of Twenty (G20) member nations, which represent the largest economies globally, should come together to formulate a plan on how to overcome this burden. The Neuroscience-20 (N20) initiative of the Society for Brain Mapping and Therapeutics (SBMT) is at the vanguard of this global collaboration to comprehensively raise awareness about brain, spine, and mental disorders worldwide. This paper aims to provide a comprehensive review of the various brain initiatives worldwide and highlight the need for cooperation and recommend ways to bring down costs associated with the discovery and treatment of neurological disorders. Our systematic search revealed that the cost of neurological and psychiatric disorders to the world economy by 2030 is roughly $16T. The cost to the economy of the United States is $1.5T annually and growing given the impact of COVID-19. We also discovered there is a shortfall of effective collaboration between nations and a lack of resources in developing countries. Current statistical analyses on the cost of neurological disorders to the world economy strongly suggest that there is a great need for investment in neurotechnology and innovation or fast-tracking therapeutics and diagnostics to curb these costs. During the current COVID-19 pandemic, SBMT, through this paper, intends to showcase the importance of worldwide collaborations to reduce the population's economic and health burden, specifically regarding neurological/brain, spine, and mental disorders.


Assuntos
Carga Global da Doença , Cooperação Internacional , Transtornos Mentais , Doenças do Sistema Nervoso , COVID-19/epidemiologia , Carga Global da Doença/organização & administração , Carga Global da Doença/tendências , Saúde Global/economia , Saúde Global/tendências , Humanos , Transtornos Mentais/economia , Transtornos Mentais/epidemiologia , Transtornos Mentais/terapia , Doenças do Sistema Nervoso/economia , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/terapia , Neurociências/métodos , Neurociências/tendências , SARS-CoV-2
13.
Nat Commun ; 12(1): 4056, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210967

RESUMO

Maternally inherited duplication of chromosome 15q11-q13 (Dup15q) is a pathogenic copy number variation (CNV) associated with autism spectrum disorder (ASD). Recently, paternally derived duplication has also been shown to contribute to the development of ASD. The molecular mechanism underlying paternal Dup15q remains unclear. Here, we conduct genetic and overexpression-based screening and identify Necdin (Ndn) as a driver gene for paternal Dup15q resulting in the development of ASD-like phenotypes in mice. An excess amount of Ndn results in enhanced spine formation and density as well as hyperexcitability of cortical pyramidal neurons. We generate 15q dupΔNdn mice with a normalized copy number of Ndn by excising its one copy from Dup15q mice using a CRISPR-Cas9 system. 15q dupΔNdn mice do not show ASD-like phenotypes and show dendritic spine dynamics and cortical excitatory-inhibitory balance similar to wild type animals. Our study provides an insight into the role of Ndn in paternal 15q duplication and a mouse model of paternal Dup15q syndrome.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Comportamento Animal/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Trissomia/genética , Animais , Transtorno do Espectro Autista/metabolismo , Cromossomos Humanos Par 15/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo
14.
J Gen Physiol ; 153(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33720306

RESUMO

Spines are tiny nanoscale protrusions from dendrites of neurons. In the cortex and hippocampus, most of the excitatory postsynaptic sites reside in spines. The bulbous spine head is connected to the dendritic shaft by a thin membranous neck. Because the neck is narrow, spine heads are thought to function as biochemically independent signaling compartments. Thus, dynamic changes in the composition, distribution, mobility, conformations, and signaling properties of molecules contained within spines can account for much of the molecular basis of postsynaptic function and regulation. A major factor in controlling these changes is the diffusional properties of proteins within this small compartment. Advances in measurement techniques using fluorescence microscopy now make it possible to measure molecular diffusion within single dendritic spines directly. Here, we review the regulatory mechanisms of diffusion in spines by local intra-spine architecture and discuss their implications for neuronal signaling and synaptic plasticity.


Assuntos
Espinhas Dendríticas , Neurônios , Difusão , Hipocampo , Plasticidade Neuronal , Sinapses
15.
Nat Commun ; 12(1): 1848, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758193

RESUMO

Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sequência de Aminoácidos , Animais , Transtorno do Espectro Autista/metabolismo , Escala de Avaliação Comportamental , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/genética , Domínios Proteicos , Processamento de Proteína , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Recombinantes , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Comportamento Social , Sinapses/genética
16.
Anat Sci Int ; 96(3): 343-358, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33459976

RESUMO

Neuronal circuits in the neocortex and hippocampus are essential for higher brain functions such as motor learning and spatial memory. In the mammalian forebrain, most excitatory synapses of pyramidal neurons are formed on spines, which are tiny protrusions extending from the dendritic shaft. The spine contains specialized molecular machinery that regulates synaptic transmission and plasticity. Spine size correlates with the efficacy of synaptic transmission, and spine morphology affects signal transduction at the post-synaptic compartment. Plasticity-related changes in the structural and molecular organization of spine synapses are thought to underlie the cellular basis of learning and memory. Recent advances in super-resolution microscopy have revealed the molecular mechanisms of the nanoscale synaptic structures regulating synaptic transmission and plasticity in living neurons, which are difficult to investigate using electron microscopy alone. In this review, we summarize recent advances in super-resolution imaging of spine synapses and discuss the implications of nanoscale structures in the regulation of synaptic function, learning, and memory.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Prosencéfalo/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Espinhas Dendríticas , Humanos , Microscopia
17.
Mol Cell Neurosci ; 109: 103564, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096206

RESUMO

Dendritic spines are major sites of excitatory synaptic connection in pyramidal neurons of the forebrain, and their functional regulation underlies the development of functional neuronal circuits and experience-dependent circuit plasticity. Dendritic spines contain a large amount of actin filaments, and their organization and dynamics control both the morphology and function of dendritic spines. New optical technologies, including super-resolution microscopy, fluorescence lifetime imaging, and fluorescence correlation measurements, have helped gather further information about the nanoscale features of spine structure and cytoskeletal organization, together with the molecular interactions and mobility within spines. These experiments identified signals that are responsible for actin reorganization in nascent spine formation, the dynamic regulation of actin assembly/disassembly in spine nanodomains, and the interaction between actin and other cytoskeletal and membranous components that modulate synaptic functions. We discuss the crucial roles of nanoscale actin dynamics in both nascent and mature spines, which may differ fundamentally in the organization of actin filaments. Combined with the progress in the mathematical simulation of spine actin dynamics, realistic modeling of spine nanostructure based on the dynamic organization of actin filaments will become possible. The models will promote our understanding of the complex interaction between the structure, function, and signaling of dendritic spines.


Assuntos
Actinas/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Espinhas Dendríticas/ultraestrutura , Difusão , Lisossomos/metabolismo , Camundongos , Microscopia/métodos , Microtúbulos/metabolismo , Modelos Neurológicos , Nanoestruturas , Neocórtex/ultraestrutura , Neurotransmissores/fisiologia , Domínios Proteicos , Mapeamento de Interação de Proteínas , Pseudópodes/fisiologia , Transdução de Sinais
18.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33109633

RESUMO

Precise information on synapse organization in a dendrite is crucial to understanding the mechanisms underlying voltage integration and the variability in the strength of synaptic inputs across dendrites of different complex morphologies. Here, we used focused ion beam/scanning electron microscope (FIB/SEM) to image the dendritic spines of mice in the hippocampal CA1 region, CA3 region, somatosensory cortex, striatum, and cerebellum (CB). Our results show that the spine geometry and dimensions differ across neuronal cell types. Despite this difference, dendritic spines were organized in an orchestrated manner such that the postsynaptic density (PSD) area per unit length of dendrite scaled positively with the dendritic diameter in CA1 proximal stratum radiatum (PSR), cortex, and CB. The ratio of the PSD area to neck length was kept relatively uniform across dendrites of different diameters in CA1 PSR. Computer simulation suggests that a similar level of synaptic strength across different dendrites in CA1 PSR enables the effective transfer of synaptic inputs from the dendrites toward soma. Excitatory postsynaptic potentials (EPSPs), evoked at single spines by glutamate uncaging and recorded at the soma, show that the neck length is more influential than head width in regulating the EPSP magnitude at the soma. Our study describes thorough morphologic features and the organizational principles of dendritic spines in different brain regions.


Assuntos
Dendritos , Sinapses , Animais , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores , Camundongos , Neurônios
19.
Microscopy (Oxf) ; 69(4): 196-213, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32244257

RESUMO

Dendritic spines are small protrusions that receive most of the excitatory inputs to the pyramidal neurons in the neocortex and the hippocampus. Excitatory neural circuits in the neocortex and hippocampus are important for experience-dependent changes in brain functions, including postnatal sensory refinement and memory formation. Several lines of evidence indicate that synaptic efficacy is correlated with spine size and structure. Hence, precise and accurate measurement of spine morphology is important for evaluation of neural circuit function and plasticity. Recent advances in light microscopy and image analysis techniques have opened the way toward a full description of spine nanostructure. In addition, large datasets of spine nanostructure can be effectively analyzed using machine learning techniques and other mathematical approaches, and recent advances in super-resolution imaging allow researchers to analyze spine structure at an unprecedented level of precision. This review summarizes computational methods that can effectively identify, segment and quantitate dendritic spines in either 2D or 3D imaging. Nanoscale analysis of spine structure and dynamics, combined with new mathematical approaches, will facilitate our understanding of spine functions in physiological and pathological conditions.


Assuntos
Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Processamento de Imagem Assistida por Computador , Microscopia/métodos , Automação Laboratorial , Espinhas Dendríticas/patologia , Humanos , Aprendizado de Máquina , Plasticidade Neuronal
20.
Microscopy (Oxf) ; 69(1): 44-52, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31990031

RESUMO

Cortactin regulates actin polymerization and stabilizes branched actin network. In neurons, cortactin is enriched in dendritic spines that contain abundant actin polymers. To explore the function of cortactin in dendritic spines, we examined spine morphology and dynamics in cultured neurons taken from cortactin knockout (KO) mice. Histological analysis revealed that the density and morphology of dendritic spines were not significantly different between wild-type (WT) and cortactin KO neurons. Time-lapse imaging of hippocampal slice cultures showed that the extent of spine volume change was similar between WT and cortactin KO neurons. Despite little effect of cortactin deletion on spine morphology and dynamics, actin turnover in dendritic spines was accelerated in cortactin KO neurons. Furthermore, we detected a suppressive effect of cortactin KO on spine head size under the condition of excessive spine enlargement induced by overexpression of a prominent postsynaptic density protein Shank2. These results suggest that cortactin may have a role in maintaining actin organization by stabilizing actin filaments near the postsynaptic density.


Assuntos
Actinas/fisiologia , Cortactina/genética , Espinhas Dendríticas/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Animais , Células Cultivadas , Espinhas Dendríticas/ultraestrutura , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...